

Some Performance Limits in Imaging and Image Processing

Peyman Milanfar*
EE Department
University of California, Santa Cruz

milanfar@ee.ucsc.edu

http://www.soe.ucsc.edu/~milanfar

^{*}Joint work with Dirk Robinson, Morteza Shahram, and Sina Farsiu, Michael Elad, Ali Shakouri

Motivation

- "The main focus of the workshop will be the analysis of image or image-like data with a view to the rigorous analysis of data from scientific experiments."
 - Estimation of Motion
 - Resolution Enhancement
 - Edge Detection

Topic I: Motion Estimation

Motion Estimation: Where are we?

"After some 20 years work on motion estimation, I think we know what we're doing"
-David Fleet (PARC)
Milanfar et al. EE Dept, UCSC

Motion Estimation: A Model

• Signal Model $f_1(x,y) = f(x,y) + n_1(x,y)$ $f_2(x,y) = f(x-v_x,y-v_y) + n_2(x,y)$

Statistical Solution: Maximum Likelihood

Correlation methods

$$\max_{v_x, v_y} \left(\sum_{x, y} f_1(x - v_x, y - v_y) f_2(x, y) \right)$$

Nonlinear Least Square:

$$\min_{v_x, v_y} \sum_{x, y} (f_1(x - v_x, y - v_y) - f_2(x, y))^2$$

- Improving to subpixel acuracy:
 - Fits a quadratic about the peak of the correlation surface.
 - Gauss-Newton methods, iterated improvement,
 - iterating over scale: pyramid-based methods

The Optical Flow Method

Optical Flow Equation (Linear Least Squares)

$$\frac{d}{dt}f(x, y, t) = f_x \cdot v_x + f_y \cdot v_y + f_t = 0 \ (\approx \nabla f^T v + f_1 - f_2)$$

Performance Limits

Fisher Information Matrix (Assume GWN)

$$I(v_{x}, v_{y}) = \frac{1}{\sigma^{2}} \begin{bmatrix} \sum_{x,y} f_{x}^{2}(x - v_{x}, y - v_{y}) & \sum_{x,y} f_{x} f_{y}(x - v_{x}, y - v_{y}) \\ \sum_{x,y} f_{x} f_{y}(x - v_{x}, y - v_{y}) & \sum_{x,y} f_{y}^{2}(x - v_{x}, y - v_{y}) \end{bmatrix}$$

Bound on the mean-squared error

$$Q = E[(v - \hat{v})(v - \hat{v})^{T}] \ge I^{-1}(v_{x}, v_{y}) = J$$

$$Q_{11} = E[(v_{x} - \hat{v}_{x})^{2}] \ge J_{11}$$

$$Q_{22} = E[(v_{y} - \hat{v}_{y})^{2}] \ge J_{22}$$

How close to the limit?

Image used:

At 3 dB:

et al. EE Dept, UCSC

What happens at high SNR?

Dept, UCSC

Performance vs Image content

Image as % of Full Bandwidth

4%

28% Milanfar et al. EE Dept, UCSC

Performance vs Image content

Sqrt of Trace of J

Can the limitations be overcome?

Qualitative Comparison

• Performance:

 In most cases, performance of 2-D and 1-D methods are within 5% of each other (mean magnitude or angular error)

Complexity:

Projection-based an order of magnitude faster

Surprising fact:

- Projection can improve performance.

Quantitative Comparison

Mean angular error vs. SNR

Mean magnitude err. vs. SNR

1-D Method better at low SNRs

Why Improvement?

Interference Rejection

Why Improvement?

- 2-D Spectrum vs. 1-D Spectrum
 - Projection Slice Theorem:
 - f \rightarrow 2-D Fourier Transform \rightarrow Slice @ angle θ
 - f \rightarrow Projection sum at $\theta \rightarrow$ 1-D Fourier Trans.
- Smoothness
 - Radon transform of f is ½ degree smoother than f.
- Reduced Bias

Optimal Projection Angles

 Goal: Find the set of projection angles that minimizes mean-square error.

 Partial solution: Find a pair of orthogonal directions where the product of "power" in the derivative of projections is largest. (What about the bias?)

Topic I: Summary

- Limits to how well motion can be estimated.
 - Existing methods should be measure against these limits.
- Bias-variance tradeoff in motion estimation.
 What is best?
 - -Bias is hard to characterize
- What are "best" image patterns for motion estimation?

Topic II: Resolution Enhancement

Why Resolution Enhancement?

 To obtain an alias-free, "diffraction limited" image we need 4 pixels covering the Airy

disk:

 That is: radius of the Airy disk must match the pixel dimensions.

Resolution Enhancement Idea

 Given multiple low-resolution moving images of a scene (a video), generate a high resolution image (or video).

$$\underbrace{\text{frame}_{1}, \text{frame}_{2}, \cdots, \text{frame}_{N-1}, \text{frame}_{N}}_{\text{High Resolution Frame}}$$

$$\underbrace{\text{frame}_{1}, \text{frame}_{2}, \cdots, \text{frame}_{N-1}, \text{frame}_{N}}_{\text{High Resolution Frame}_{1}}, \underbrace{\text{High Resolution Frame}_{N}}_{\text{High Resolution Frame}_{2}}$$

"Trading off time resolution or view diversity to gain spatial resolution"

Resolution Enhancement Model

 A simple model relating the low-resolution blurry image to the high resolution crisper image.

$$y_{1} = a_{1}x_{1} + a_{2}x_{2} + a_{3}x_{3} + a_{4}x_{4} + e_{1}$$

$$y_{2} = 0 \cdot x_{1} + a_{2}x_{2} + 0 \cdot x_{3} + a_{4}x_{4} + e_{2}$$

$$y_{3} = 0 \cdot x_{1} + 0 \cdot x_{2} + a_{3}x_{3} + a_{4}x_{4} + e_{3}$$

$$y_{4} = 0 \cdot x_{1} + 0 \cdot x_{2} + 0 \cdot x_{3} + a_{4}x_{4} + e_{4}$$

Low vs High Res Pixels

x2 enhancement

The Mathematical Model

k-th frame
$$\longrightarrow \underline{y}_k = A_k \, \underline{x} + \underline{e}_k \qquad for \qquad 1 \leq k \leq p$$

$$A_k = DC_k W_k$$
 Downsampling Warping Blurring

$$A_k = [T_{k,1} \quad T_{k,2} \quad \cdots \quad T_{k,l^2}]$$
 Upper-banded, "nearly" Toeplitz

BTTB system
$$y = Ax + e$$

- The system is typically underdetermined and ill-conditioned.
- 10's or 100's of thousands of unknown variables and data.
- Warping (motion), must be estimated!

Some real examples:

Infrared Camera (Night Vision)

License Plate Reading

Digital Video Camera from 2nd story window

100 miles

Before

After

Detail Before

Detail After

MPEG Surveillance Video

What are the limits to enhancement?

Motion Estimation Accuracy

Model Accuracy

Sensor Noise

Rayleigh Limit?

A Case Study

Incoherent imaging of two closely-spaced point sources

 Statistical definition of resolution: the ability of the imaging system to distinguish two hypotheses in the presence of additive noise.

Slit Aperture Imaging

 The image of an ideal point source is captured as a spatially extended pattern (point spread function or PSF)

Incoherent Imaging

 The image of two sources is the incoherent sum of PSFs, representing the effect of the diffraction

Incoherent Imaging

$$\sqrt{\alpha}\delta\left(x - \frac{d}{2}\right) + \sqrt{\beta}\delta\left(x + \frac{d}{2}\right)$$

$$\alpha + \beta = 2$$

Power Constraint

$$f(x,d) = \alpha \operatorname{sinc}^{2}\left(x - \frac{d}{2}\right) + \beta \operatorname{sinc}^{2}\left(x + \frac{d}{2}\right) + w(x)$$

Milanfar et al. EE Dept, UCSC

 $\mathsf{GWN}(\sigma^2)$

The Rayleigh "Limit"

- ➤ According to Rayleigh criterion these two point sources are not resolvable when d<1.
 - > Rule of thumb, not physical law
- ➤ Depending on the signal-to-noise ratio (SNR), resolution beyond the Rayleigh limit is indeed possible. ("super-resolution").
 - > But this has its limits too.

A Statistical Definition of Resolution

□ The question of presence of one peak (d=0) or two peaks (0<d<1) can be formulated in statistical terms by defining two hypotheses:</p>

$$\begin{cases} H_0: d = 0 & one \ peak \\ H_1: d > 0 & two \ peaks \end{cases}$$

$$\begin{cases} H_0: f(x) = 2\operatorname{sinc}^2(x) + w(x) \\ H_1: f(x) = \alpha \operatorname{sinc}^2\left(x - \frac{d}{2}\right) + \beta \operatorname{sinc}^2\left(x + \frac{d}{2}\right) + w(x) \end{cases}$$

Resolution = Discrimination with Unknown Parameters

 This is a (nonlinear) problem of signal discrimination with unknown parameter.

 The problem of interest revolves around the values of d in the range 0≤d<1. We can develop locally optimal statistical tests (discriminators).

Definition of Resolution Limit

Question: Minimum "d" detectable at very high probability of detection (P_d =0.99) and very low false alarm rate (P_f =0.001) at a given SNR.

Minimum Detectable "d" vs. SNR (equal power)

General Case α≠β

Minimum Detectable "d" vs. SNR (unequal vs. equal power)

Milanfar et al. EE Dept, UCSC

An explanation and some insight

For a given d_{min} , lower SNR is needed for the case $\beta \neq \alpha$ as compared to the case $\beta = \alpha$.

- Does the information content of the estimate of d behave this way?
 - > Yes.

CRLB Curves for d

CRLB Curves for d

Topic II:Summary

- Two factors play key roles in determining resolution beyond the Rayleigh limit
 - □ SNR per sample
 - □ Sampling Rate
- We can address the question of resolution in the context of information theory.
- Extensions to the full resolution enhancement problem, including motion uncertainty, remain to be studied.

Achievable accuracy in edge localization

. 1. Typical edge profile: A plot of $S(x;\Theta) = I\Phi(\frac{x-\ell}{\sigma_s})$ along the xaxis with $I=2, \ \ell=0, \ \text{and} \ \sigma_s=0.6.$

"On achievable accuracy in edge localization" Kakarala and Hero, T. PAMI 14:7, 1992

Achievable accuracy in edge localization

$$E[(\hat{l}-l)^2] \ge \frac{\sigma^2 \sqrt{\pi} \sigma_s}{I^2 T}$$

Overall Conclusions

- Fundamental performance limits in imaging are important to our understanding, and can help stop bickering.
- By understanding these limits, we optimize our algorithms accordingly.
- The propagation of these uncertainties from low to high level tasks is a challenge.
- Need to view image processing with increased awareness of notion of information.